A Minimax Algorithm Better Than Alpha-beta?: No and Yes

11 Feb 2017  ·  Aske Plaat, Jonathan Schaeffer, Wim Pijls, Arie de Bruin ·

This paper has three main contributions to our understanding of fixed-depth minimax search: (A) A new formulation for Stockman's SSS* algorithm, based on Alpha-Beta, is presented. It solves all the perceived drawbacks of SSS*, finally transforming it into a practical algorithm. In effect, we show that SSS* = alpha-beta + ransposition tables. The crucial step is the realization that transposition tables contain so-called solution trees, structures that are used in best-first search algorithms like SSS*. Having created a practical version, we present performance measurements with tournament game-playing programs for three different minimax games, yielding results that contradict a number of publications. (B) Based on the insights gained in our attempts at understanding SSS*, we present a framework that facilitates the construction of several best-first fixed- depth game-tree search algorithms, known and new. The framework is based on depth-first null-window Alpha-Beta search, enhanced with storage to allow for the refining of previous search results. It focuses attention on the essential differences between algorithms. (C) We present a new instance of the framework, MTD(f). It is well-suited for use with iterative deepening, and performs better than algorithms that are currently used in most state-of-the-art game-playing programs. We provide experimental evidence to explain why MTD(f) performs better than the other fixed-depth minimax algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here