A novel approach for predicting epidemiological forecasting parameters based on real-time signals and Data Assimilation

3 Jul 2023  ·  Romain Molinas, César Quilodrán Casas, Rossella Arcucci, Ovidiu Şerban ·

This paper proposes a novel approach to predict epidemiological parameters by integrating new real-time signals from various sources of information, such as novel social media-based population density maps and Air Quality data. We implement an ensemble of Convolutional Neural Networks (CNN) models using various data sources and fusion methodology to build robust predictions and simulate several dynamic parameters that could improve the decision-making process for policymakers. Additionally, we used data assimilation to estimate the state of our system from fused CNN predictions. The combination of meteorological signals and social media-based population density maps improved the performance and flexibility of our prediction of the COVID-19 outbreak in London. While the proposed approach outperforms standard models, such as compartmental models traditionally used in disease forecasting (SEIR), generating robust and consistent predictions allows us to increase the stability of our model while increasing its accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here