A Novel Deterministic Framework for Non-probabilistic Recommender Systems

Recommendation is a technique which helps and suggests a user, any relevant item from a large information space. Current techniques for this purpose include non-probabilistic methods like content-based filtering and collaborative filtering (CF) and probabilistic methods like Bayesian inference and Case-based reasoning methods. CF algorithms use similarity measures for calculating similarity between users. In this paper, we propose a novel framework which deterministically switches between the CF algorithms based on sparsity to improve accuracy of recommendation.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here