A Physics-Informed Deep Learning Paradigm for Traffic State and Fundamental Diagram Estimation

6 Jun 2021  ·  Rongye Shi, Zhaobin Mo, Kuang Huang, Xuan Di, Qiang Du ·

Traffic state estimation (TSE) bifurcates into two categories, model-driven and data-driven (e.g., machine learning, ML), while each suffers from either deficient physics or small data. To mitigate these limitations, recent studies introduced a hybrid paradigm, physics-informed deep learning (PIDL), which contains both model-driven and data-driven components. This paper contributes an improved version, called physics-informed deep learning with a fundamental diagram learner (PIDL+FDL), which integrates ML terms into the model-driven component to learn a functional form of a fundamental diagram (FD), i.e., a mapping from traffic density to flow or velocity. The proposed PIDL+FDL has the advantages of performing the TSE learning, model parameter identification, and FD estimation simultaneously. We demonstrate the use of PIDL+FDL to solve popular first-order and second-order traffic flow models and reconstruct the FD relation as well as model parameters that are outside the FD terms. We then evaluate the PIDL+FDL-based TSE using the Next Generation SIMulation (NGSIM) dataset. The experimental results show the superiority of the PIDL+FDL in terms of improved estimation accuracy and data efficiency over advanced baseline TSE methods, and additionally, the capacity to properly learn the unknown underlying FD relation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here