A Privacy-Preserving and Trustable Multi-agent Learning Framework

2 Jun 2021  ·  Anudit Nagar, Cuong Tran, Ferdinando Fioretto ·

Distributed multi-agent learning enables agents to cooperatively train a model without requiring to share their datasets. While this setting ensures some level of privacy, it has been shown that, even when data is not directly shared, the training process is vulnerable to privacy attacks including data reconstruction and model inversion attacks. Additionally, malicious agents that train on inverted labels or random data, may arbitrarily weaken the accuracy of the global model. This paper addresses these challenges and presents Privacy-preserving and trustable Distributed Learning (PT-DL), a fully decentralized framework that relies on Differential Privacy to guarantee strong privacy protections of the agents' data, and Ethereum smart contracts to ensure trustability. The paper shows that PT-DL is resilient up to a 50% collusion attack, with high probability, in a malicious trust model and the experimental evaluation illustrates the benefits of the proposed model as a privacy-preserving and trustable distributed multi-agent learning system on several classification tasks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here