A probabilistic population code based on neural samples

NeurIPS 2018 Sabyasachi ShivkumarRichard LangeAnkani ChattorajRalf Haefner

Sensory processing is often characterized as implementing probabilistic inference: networks of neurons compute posterior beliefs over unobserved causes given the sensory inputs. How these beliefs are computed and represented by neural responses is much-debated (Fiser et al. 2010, Pouget et al. 2013)... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet