RFN: A Random-Feature Based Newton Method for Empirical Risk Minimization in Reproducing Kernel Hilbert Spaces

12 Feb 2020  ·  Ting-Jui Chang, Shahin Shahrampour ·

In supervised learning using kernel methods, we often encounter a large-scale finite-sum minimization over a reproducing kernel Hilbert space (RKHS). Large-scale finite-sum problems can be solved using efficient variants of Newton method, where the Hessian is approximated via sub-samples of data. In RKHS, however, the dependence of the penalty function to kernel makes standard sub-sampling approaches inapplicable, since the gram matrix is not readily available in a low-rank form. In this paper, we observe that for this class of problems, one can naturally use kernel approximation to speed up the Newton method. Focusing on randomized features for kernel approximation, we provide a novel second-order algorithm that enjoys local superlinear convergence and global linear convergence (with high probability). We derive the theoretical lower bound for the number of random features required for the approximated Hessian to be close to the true Hessian in the norm sense. Our numerical experiments on real-world data verify the efficiency of our method compared to several benchmarks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods