A Randomized Approach for Tight Privacy Accounting

17 Apr 2023  ·  Jiachen T. Wang, Saeed Mahloujifar, Tong Wu, Ruoxi Jia, Prateek Mittal ·

Bounding privacy leakage over compositions, i.e., privacy accounting, is a key challenge in differential privacy (DP). The privacy parameter ($\eps$ or $\delta$) is often easy to estimate but hard to bound. In this paper, we propose a new differential privacy paradigm called estimate-verify-release (EVR), which addresses the challenges of providing a strict upper bound for privacy parameter in DP compositions by converting an estimate of privacy parameter into a formal guarantee. The EVR paradigm first estimates the privacy parameter of a mechanism, then verifies whether it meets this guarantee, and finally releases the query output based on the verification result. The core component of the EVR is privacy verification. We develop a randomized privacy verifier using Monte Carlo (MC) technique. Furthermore, we propose an MC-based DP accountant that outperforms existing DP accounting techniques in terms of accuracy and efficiency. Our empirical evaluation shows the newly proposed EVR paradigm improves the utility-privacy tradeoff for privacy-preserving machine learning.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here