A Rapidly Deployable Classification System using Visual Data for the Application of Precision Weed Management

25 Jan 2018 David Hall Feras Dayoub Tristan Perez Chris McCool

In this work we demonstrate a rapidly deployable weed classification system that uses visual data to enable autonomous precision weeding without making prior assumptions about which weed species are present in a given field. Previous work in this area relies on having prior knowledge of the weed species present in the field... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet