A Revisit of Sparse Coding Based Anomaly Detection in Stacked RNN Framework

ICCV 2017 Weixin LuoWen LiuShenghua Gao

Motivated by the capability of sparse coding based anomaly detection, we propose a Temporally-coherent Sparse Coding (TSC) where we enforce similar neighbouring frames be encoded with similar reconstruction coefficients. Then we map the TSC with a special type of stacked Recurrent Neural Network (sRNN)... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet