A Sample-Efficient Algorithm for Episodic Finite-Horizon MDP with Constraints

23 Sep 2020  ·  Krishna C. Kalagarla, Rahul Jain, Pierluigi Nuzzo ·

Constrained Markov Decision Processes (CMDPs) formalize sequential decision-making problems whose objective is to minimize a cost function while satisfying constraints on various cost functions. In this paper, we consider the setting of episodic fixed-horizon CMDPs. We propose an online algorithm which leverages the linear programming formulation of finite-horizon CMDP for repeated optimistic planning to provide a probably approximately correct (PAC) guarantee on the number of episodes needed to ensure an $\epsilon$-optimal policy, i.e., with resulting objective value within $\epsilon$ of the optimal value and satisfying the constraints within $\epsilon$-tolerance, with probability at least $1-\delta$. The number of episodes needed is shown to be of the order $\tilde{\mathcal{O}}\big(\frac{|S||A|C^{2}H^{2}}{\epsilon^{2}}\log\frac{1}{\delta}\big)$, where $C$ is the upper bound on the number of possible successor states for a state-action pair. Therefore, if $C \ll |S|$, the number of episodes needed have a linear dependence on the state and action space sizes $|S|$ and $|A|$, respectively, and quadratic dependence on the time horizon $H$.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here