A Sequential Modelling Approach for Indoor Temperature Prediction and Heating Control in Smart Buildings

21 Sep 2020  ·  Yongchao Huang, Hugh Miles, Pengfei Zhang ·

The rising availability of large volume data, along with increasing computing power, has enabled a wide application of statistical Machine Learning (ML) algorithms in the domains of Cyber-Physical Systems (CPS), Internet of Things (IoT) and Smart Building Networks (SBN). This paper proposes a learning-based framework for sequentially applying the data-driven statistical methods to predict indoor temperature and yields an algorithm for controlling building heating system accordingly. This framework consists of a two-stage modelling effort: in the first stage, an univariate time series model (AR) was employed to predict ambient conditions; together with other control variables, they served as the input features for a second stage modelling where an multivariate ML model (XGBoost) was deployed. The models were trained with real world data from building sensor network measurements, and used to predict future temperature trajectories. Experimental results demonstrate the effectiveness of the modelling approach and control algorithm, and reveal the promising potential of the mixed data-driven approach in smart building applications. By making wise use of IoT sensory data and ML algorithms, this work contributes to efficient energy management and sustainability in smart buildings.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here