A Transformer-based Framework for Multivariate Time Series Representation Learning

In this work we propose for the first time a transformer-based framework for unsupervised representation learning of multivariate time series. Pre-trained models can be potentially used for downstream tasks such as regression and classification, forecasting and missing value imputation. By evaluating our models on several benchmark datasets for multivariate time series regression and classification, we show that not only does our modeling approach represent the most successful method employing unsupervised learning of multivariate time series presented to date, but also that it exceeds the current state-of-the-art performance of supervised methods; it does so even when the number of training samples is very limited, while offering computational efficiency. Finally, we demonstrate that unsupervised pre-training of our transformer models offers a substantial performance benefit over fully supervised learning, even without leveraging additional unlabeled data, i.e., by reusing the same data samples through the unsupervised objective.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper
Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Time Series Classification Insectwingbeat TST Accuracy 0.687 # 2

Methods


No methods listed for this paper. Add relevant methods here