Abnormal Event Detection and Location for Dense Crowds using Repulsive Forces and Sparse Reconstruction

21 Aug 2018Pei LvShunhua LiuMingliang XuBing Zhou

This paper proposes a method based on repulsive forces and sparse reconstruction for the detection and location of abnormal events in crowded scenes. In order to avoid the challenging problem of accurately tracking each specific individual in a dense or complex scene, we divide each frame of the surveillance video into a fixed number of grids and select a single representative point in each grid as the individual to track... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet