Accelerating Atmospheric Turbulence Simulation via Learned Phase-to-Space Transform

Fast and accurate simulation of imaging through atmospheric turbulence is essential for developing turbulence mitigation algorithms. Recognizing the limitations of previous approaches, we introduce a new concept known as the phase-to-space (P2S) transform to significantly speed up the simulation. P2S is build upon three ideas: (1) reformulating the spatially varying convolution as a set of invariant convolutions with basis functions, (2) learning the basis function via the known turbulence statistics models, (3) implementing the P2S transform via a light-weight network that directly convert the phase representation to spatial representation. The new simulator offers 300x -- 1000x speed up compared to the mainstream split-step simulators while preserving the essential turbulence statistics.

PDF Abstract ICCV 2021 PDF ICCV 2021 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods