ActionFlowNet: Learning Motion Representation for Action Recognition

Even with the recent advances in convolutional neural networks (CNN) in various visual recognition tasks, the state-of-the-art action recognition system still relies on hand crafted motion feature such as optical flow to achieve the best performance. We propose a multitask learning model ActionFlowNet to train a single stream network directly from raw pixels to jointly estimate optical flow while recognizing actions with convolutional neural networks, capturing both appearance and motion in a single model... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet