Active Learning for Risk-Sensitive Inverse Reinforcement Learning

14 Sep 2019  ·  Rui Chen, Wenshuo Wang, Zirui Zhao, Ding Zhao ·

One typical assumption in inverse reinforcement learning (IRL) is that human experts act to optimize the expected utility of a stochastic cost with a fixed distribution. This assumption deviates from actual human behaviors under ambiguity. Risk-sensitive inverse reinforcement learning (RS-IRL) bridges such gap by assuming that humans act according to a random cost with respect to a set of subjectively distorted distributions instead of a fixed one. Such assumption provides the additional flexibility to model human's risk preferences, represented by a risk envelope, in safe-critical tasks. However, like other learning from demonstration techniques, RS-IRL could also suffer inefficient learning due to redundant demonstrations. Inspired by the concept of active learning, this research derives a probabilistic disturbance sampling scheme to enable an RS-IRL agent to query expert support that is likely to expose unrevealed boundaries of the expert's risk envelope. Experimental results confirm that our approach accelerates the convergence of RS-IRL algorithms with lower variance while still guaranteeing unbiased convergence.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here