Adaptive Graphical Model Network for 2D Handpose Estimation

18 Sep 2019Deying KongYifei ChenHaoyu MaXiangyi YanXiaohui Xie

In this paper, we propose a new architecture called Adaptive Graphical Model Network (AGMN) to tackle the task of 2D hand pose estimation from a monocular RGB image. The AGMN consists of two branches of deep convolutional neural networks for calculating unary and pairwise potential functions, followed by a graphical model inference module for integrating unary and pairwise potentials... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet