Adaptive-Rate Sparse Signal Reconstruction With Application in Compressive Background Subtraction

We propose and analyze an online algorithm for reconstructing a sequence of signals from a limited number of linear measurements. The signals are assumed sparse, with unknown support, and evolve over time according to a generic nonlinear dynamical model... Our algorithm, based on recent theoretical results for $\ell_1$-$\ell_1$ minimization, is recursive and computes the number of measurements to be taken at each time on-the-fly. As an example, we apply the algorithm to compressive video background subtraction, a problem that can be stated as follows: given a set of measurements of a sequence of images with a static background, simultaneously reconstruct each image while separating its foreground from the background. The performance of our method is illustrated on sequences of real images: we observe that it allows a dramatic reduction in the number of measurements with respect to state-of-the-art compressive background subtraction schemes. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here