Adaptive Spatial-Temporal Inception Graph Convolutional Networks for Multi-step Spatial-Temporal Network Data Forecasting

1 Jan 2021  ·  Xing Wang, Lin Zhu, Juan Zhao, Zhou Xu, Zhao Li, Junlan Feng, Chao Deng ·

Spatial-temporal data forecasting is of great importance for industries such as telecom network operation and transportation management. However, spatial-temporal data is inherent with complex spatial-temporal correlations and behaves heterogeneities among the spatial and temporal aspects, which makes the forecasting remain as a very challenging task though recently great work has been done. In this paper, we propose a novel model, Adaptive Spatial-Temporal Inception Graph Convolution Networks (ASTI-GCN), to solve the multi-step spatial-temporal data forecasting problem. The model proposes multi-scale spatial-temporal joint graph convolution block to directly model the spatial-temporal joint correlations without introducing elaborately constructed mechanisms. Moreover inception mechanism combined with the graph node-level attention is introduced to make the model capture the heterogeneous nature of the graph adaptively. Our experiments on three real-world datasets from two different fields consistently show ASTI-GCN outperforms the state-of-the-art performance. In addition, ASTI-GCN is proved to generalize well.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods