AdaX: Adaptive Gradient Descent with Exponential Long Term Memory

ICLR 2020 Wenjie LiZhaoyang ZhangXinjiang WangPing Luo

Although adaptive optimization algorithms such as Adam show fast convergence in many machine learning tasks, this paper identifies a problem of Adam by analyzing its performance in a simple non-convex synthetic problem, showing that Adam's fast convergence would possibly lead the algorithm to local minimums. To address this problem, we improve Adam by proposing a novel adaptive gradient descent algorithm named AdaX... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper