Advancing Deep Metric Learning Through Multiple Batch Norms And Multi-Targeted Adversarial Examples

29 Nov 2022  ·  Inderjeet Singh, Kazuya Kakizaki, Toshinori Araki ·

Deep Metric Learning (DML) is a prominent field in machine learning with extensive practical applications that concentrate on learning visual similarities. It is known that inputs such as Adversarial Examples (AXs), which follow a distribution different from that of clean data, result in false predictions from DML systems. This paper proposes MDProp, a framework to simultaneously improve the performance of DML models on clean data and inputs following multiple distributions. MDProp utilizes multi-distribution data through an AX generation process while leveraging disentangled learning through multiple batch normalization layers during the training of a DML model. MDProp is the first to generate feature space multi-targeted AXs to perform targeted regularization on the training model's denser embedding space regions, resulting in improved embedding space densities contributing to the improved generalization in the trained models. From a comprehensive experimental analysis, we show that MDProp results in up to 2.95% increased clean data Recall@1 scores and up to 2.12 times increased robustness against different input distributions compared to the conventional methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods