Adversarial Stein Training for Graph Energy Models

30 Aug 2021  ·  Shiv Shankar ·

Learning distributions over graph-structured data is a challenging task with many applications in biology and chemistry. In this work we use an energy-based model (EBM) based on multi-channel graph neural networks (GNN) to learn permutation invariant unnormalized density functions on graphs. Unlike standard EBM training methods our approach is to learn the model via minimizing adversarial stein discrepancy. Samples from the model can be obtained via Langevin dynamics based MCMC. We find that this approach achieves competitive results on graph generation compared to benchmark models.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.