AirLift: A Fast and Comprehensive Technique for Remapping Alignments between Reference Genomes

As genome sequencing tools and techniques improve, researchers are able to incrementally assemble more accurate reference genomes, which enable sensitivity in read mapping and downstream analysis such as variant calling. A more sensitive downstream analysis is critical for a better understanding of the genome donor (e.g., health characteristics). Therefore, read sets from sequenced samples should ideally be mapped to the latest available reference genome that represents the most relevant population. Unfortunately, the increasingly large amount of available genomic data makes it prohibitively expensive to fully re-map each read set to its respective reference genome every time the reference is updated. There are several tools that attempt to accelerate the process of updating a read data set from one reference to another (i.e., remapping). However, if a read maps to a region in the old reference that does not appear with a reasonable degree of similarity in the new reference, the read cannot be remapped. We find that, as a result of this drawback, a significant portion of annotations are lost when using state-of-the-art remapping tools. To address this major limitation in existing tools, we propose AirLift, a fast and comprehensive technique for remapping alignments from one genome to another. Compared to the state-of-the-art method for remapping reads (i.e., full mapping), AirLift reduces the overall execution time to remap read sets between two reference genome versions by up to 27.4x. We validate our remapping results with GATK and find that AirLift provides high accuracy in identifying ground truth SNP/INDEL variants.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here