An Augmented Lagrangian Method for Piano Transcription using Equal Loudness Thresholding and LSTM-based Decoding

1 Jul 2017  ·  Sebastian Ewert, Mark B. Sandler ·

A central goal in automatic music transcription is to detect individual note events in music recordings. An important variant is instrument-dependent music transcription where methods can use calibration data for the instruments in use. However, despite the additional information, results rarely exceed an f-measure of 80%. As a potential explanation, the transcription problem can be shown to be badly conditioned and thus relies on appropriate regularization. A recently proposed method employs a mixture of simple, convex regularizers (to stabilize the parameter estimation process) and more complex terms (to encourage more meaningful structure). In this paper, we present two extensions to this method. First, we integrate a computational loudness model to better differentiate real from spurious note detections. Second, we employ (Bidirectional) Long Short Term Memory networks to re-weight the likelihood of detected note constellations. Despite their simplicity, our two extensions lead to a drop of about 35% in note error rate compared to the state-of-the-art.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here