An Effective Hit-or-Miss Layer Favoring Feature Interpretation as Learned Prototypes Deformations

23 Feb 2019A. DeliegeA. CioppaM. Van Droogenbroeck

Neural networks designed for the task of classification have become a commodity in recent years. Many works target the development of more effective networks, which results in a complexification of their architectures with more layers, multiple sub-networks, or even the combination of multiple classifiers, but this often comes at the expense of producing uninterpretable black boxes... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet