An Evolutionary Algorithm with Crossover and Mutation for Model-Based Clustering

31 Oct 2018  ·  Sharon M. McNicholas, Paul D. McNicholas, Daniel A. Ashlock ·

An evolutionary algorithm (EA) is developed as an alternative to the EM algorithm for parameter estimation in model-based clustering. This EA facilitates a different search of the fitness landscape, i.e., the likelihood surface, utilizing both crossover and mutation. Furthermore, this EA represents an efficient approach to "hard" model-based clustering and so it can be viewed as a sort of generalization of the k-means algorithm, which is itself equivalent to a restricted Gaussian mixture model. The EA is illustrated on several datasets, and its performance is compared to other hard clustering approaches and model-based clustering via the EM algorithm.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.