An Improved Two-Archive Evolutionary Algorithm for Constrained Multi-Objective Optimization

10 Mar 2021  ·  Xinyu Shan, Ke Li ·

Constrained multi-objective optimization problems (CMOPs) are ubiquitous in real-world engineering optimization scenarios. A key issue in constrained multi-objective optimization is to strike a balance among convergence, diversity and feasibility. A recently proposed two-archive evolutionary algorithm for constrained multi-objective optimization (C-TAEA) has be shown as a latest algorithm. However, due to its simple implementation of the collaboration mechanism between its two co-evolving archives, C-TAEA is struggling when solving problems whose \textit{pseudo} Pareto-optimal front, which does not take constraints into consideration, dominates the \textit{feasible} Pareto-optimal front. In this paper, we propose an improved version C-TAEA, dubbed C-TAEA-II, featuring an improved update mechanism of two co-evolving archives and an adaptive mating selection mechanism to promote a better collaboration between co-evolving archives. Empirical results demonstrate the competitiveness of the proposed C-TAEA-II in comparison with five representative constrained evolutionary multi-objective optimization algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here