An integral sliding-mode parallel control approach for general nonlinear systems via piecewise affine linear models

13 Jan 2021  ·  ChunYang Zhang, Qing Gao, Yue Deng, Jianbin Qiu ·

The fundamental problem of stabilizing a general nonaffine continuous-time nonlinear system is investigated via piecewise affine linear models (PALMs) in this article. A novel integral sliding-mode parallel control (ISMPC) approach is developed, where an uncertain piecewise affine system (PWA) is constructed to model a nonaffine continuous-time nonlinear system equivalently on a compact region containing the origin. A piecewise sliding-mode parallel controller is designed to globally stabilize the PALM and, consequently, to semiglobally stabilize the original nonlinear system. The proposed scheme enjoys three favorable features: (i) some restrictions on the system input channel are eliminated, thus the developed method is more relaxed compared with the published approaches; (ii) it is convenient to be used to deal with both matched and unmatched uncertainties of the system; and (iii) the proposed piecewise parallel controller generates smooth control signals even around the boundaries between different subspaces, which makes the developed control strategy more implementable and reliable. Moreover, we provide discussions about the universality analysis of the developed control strategy for two kinds of typical nonlinear systems. Simulation results from two numerical examples further demonstrate the performance of the developed control approach.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here