An Interactive Interpretability System for Breast Cancer Screening with Deep Learning

30 Sep 2022  ·  Yuzhe Lu, Adam Perer ·

Deep learning methods, in particular convolutional neural networks, have emerged as a powerful tool in medical image computing tasks. While these complex models provide excellent performance, their black-box nature may hinder real-world adoption in high-stakes decision-making. In this paper, we propose an interactive system to take advantage of state-of-the-art interpretability techniques to assist radiologists with breast cancer screening. Our system integrates a deep learning model into the radiologists' workflow and provides novel interactions to promote understanding of the model's decision-making process. Moreover, we demonstrate that our system can take advantage of user interactions progressively to provide finer-grained explainability reports with little labeling overhead. Due to the generic nature of the adopted interpretability technique, our system is domain-agnostic and can be used for many different medical image computing tasks, presenting a novel perspective on how we can leverage visual analytics to transform originally static interpretability techniques to augment human decision making and promote the adoption of medical AI.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here