A Reconfigurable Convolution-in-Pixel CMOS Image Sensor Architecture

9 Jan 2021  ·  Ruibing Song, Kejie Huang, Zongsheng Wang, Haibin Shen ·

The separation of the data capture and analysis in modern vision systems has led to a massive amount of data transfer between the end devices and cloud computers, resulting in long latency, slow response, and high power consumption. Efficient hardware architectures are under focused development to enable Artificial Intelligence (AI) at the resource-limited end sensing devices... One of the most promising solutions is to enable Processing-in-Pixel (PIP) scheme. However, the conventional schemes suffer from the low fill-factor issue. This paper proposes a PIP based CMOS sensor architecture, which allows convolution operation before the column readout circuit to significantly improve the image reading speed with much lower power consumption. The simulation results show that the proposed architecture could support the computing efficiency up to 11.65 TOPS/W at the 8-bit weight configuration, which is three times as high as the conventional schemes. The transistors required for each pixel are only 2.5T, significantly improving the fill-factor. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods