Analyzing and Mitigating Interference in Neural Architecture Search

29 Aug 2021  ·  Jin Xu, Xu Tan, Kaitao Song, Renqian Luo, Yichong Leng, Tao Qin, Tie-Yan Liu, Jian Li ·

Weight sharing is a popular approach to reduce the cost of neural architecture search (NAS) by reusing the weights of shared operators from previously trained child models. However, the rank correlation between the estimated accuracy and ground truth accuracy of those child models is low due to the interference among different child models caused by weight sharing. In this paper, we investigate the interference issue by sampling different child models and calculating the gradient similarity of shared operators, and observe: 1) the interference on a shared operator between two child models is positively correlated with the number of different operators; 2) the interference is smaller when the inputs and outputs of the shared operator are more similar. Inspired by these two observations, we propose two approaches to mitigate the interference: 1) MAGIC-T: rather than randomly sampling child models for optimization, we propose a gradual modification scheme by modifying one operator between adjacent optimization steps to minimize the interference on the shared operators; 2) MAGIC-A: forcing the inputs and outputs of the operator across all child models to be similar to reduce the interference. Experiments on a BERT search space verify that mitigating interference via each of our proposed methods improves the rank correlation of super-pet and combining both methods can achieve better results. Our discovered architecture outperforms RoBERTa$_{\rm base}$ by 1.1 and 0.6 points and ELECTRA$_{\rm base}$ by 1.6 and 1.1 points on the dev and test set of GLUE benchmark. Extensive results on the BERT compression, reading comprehension and ImageNet task demonstrate the effectiveness and generality of our proposed methods.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.