Anomaly Detection with Score Distribution Discrimination

26 Jun 2023  ·  Minqi Jiang, Songqiao Han, Hailiang Huang ·

Recent studies give more attention to the anomaly detection (AD) methods that can leverage a handful of labeled anomalies along with abundant unlabeled data. These existing anomaly-informed AD methods rely on manually predefined score target(s), e.g., prior constant or margin hyperparameter(s), to realize discrimination in anomaly scores between normal and abnormal data. However, such methods would be vulnerable to the existence of anomaly contamination in the unlabeled data, and also lack adaptation to different data scenarios. In this paper, we propose to optimize the anomaly scoring function from the view of score distribution, thus better retaining the diversity and more fine-grained information of input data, especially when the unlabeled data contains anomaly noises in more practical AD scenarios. We design a novel loss function called Overlap loss that minimizes the overlap area between the score distributions of normal and abnormal samples, which no longer depends on prior anomaly score targets and thus acquires adaptability to various datasets. Overlap loss consists of Score Distribution Estimator and Overlap Area Calculation, which are introduced to overcome challenges when estimating arbitrary score distributions, and to ensure the boundness of training loss. As a general loss component, Overlap loss can be effectively integrated into multiple network architectures for constructing AD models. Extensive experimental results indicate that Overlap loss based AD models significantly outperform their state-of-the-art counterparts, and achieve better performance on different types of anomalies.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here