Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

24 Mar 2019  ·  Kenta Oono, Taiji Suzuki ·

Convolutional neural networks (CNNs) have been shown to achieve optimal approximation and estimation error rates (in minimax sense) in several function classes. However, previous analyzed optimal CNNs are unrealistically wide and difficult to obtain via optimization due to sparse constraints in important function classes, including the H\"older class. We show a ResNet-type CNN can attain the minimax optimal error rates in these classes in more plausible situations -- it can be dense, and its width, channel size, and filter size are constant with respect to sample size. The key idea is that we can replicate the learning ability of Fully-connected neural networks (FNNs) by tailored CNNs, as long as the FNNs have \textit{block-sparse} structures. Our theory is general in a sense that we can automatically translate any approximation rate achieved by block-sparse FNNs into that by CNNs. As an application, we derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H\"older classes with the same strategy.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here