ATOMO: Communication-efficient Learning via Atomic Sparsification

Distributed model training suffers from communication overheads due to frequent gradient updates transmitted between compute nodes. To mitigate these overheads, several studies propose the use of sparsified stochastic gradients. We argue that these are facets of a general sparsification method that can operate on any possible atomic decomposition. Notable examples include element-wise, singular value, and Fourier decompositions. We present ATOMO, a general framework for atomic sparsification of stochastic gradients. Given a gradient, an atomic decomposition, and a sparsity budget, ATOMO gives a random unbiased sparsification of the atoms minimizing variance. We show that recent methods such as QSGD and TernGrad are special cases of ATOMO and that sparsifiying the singular value decomposition of neural networks gradients, rather than their coordinates, can lead to significantly faster distributed training.

PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here