Automatic Distractor Suggestion for Multiple-Choice Tests Using Concept Embeddings and Information Retrieval

WS 2018 Le An HaVictoria Yaneva

Developing plausible distractors (wrong answer options) when writing multiple-choice questions has been described as one of the most challenging and time-consuming parts of the item-writing process. In this paper we propose a fully automatic method for generating distractor suggestions for multiple-choice questions used in high-stakes medical exams... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet