Bayesian Analysis of Dynamic Linear Topic Models

In dynamic topic modeling, the proportional contribution of a topic to a document depends on the temporal dynamics of that topic's overall prevalence in the corpus. We extend the Dynamic Topic Model of Blei and Lafferty (2006) by explicitly modeling document level topic proportions with covariates and dynamic structure that includes polynomial trends and periodicity... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet