Better Safe than Sorry: Pre-training CLIP against Targeted Data Poisoning and Backdoor Attacks

5 Oct 2023  ·  Wenhan Yang, Jingdong Gao, Baharan Mirzasoleiman ·

Contrastive Language-Image Pre-training (CLIP) on large image-caption datasets has achieved remarkable success in zero-shot classification and enabled transferability to new domains. However, CLIP is extremely more vulnerable to targeted data poisoning and backdoor attacks, compared to supervised learning. Perhaps surprisingly, poisoning 0.0001% of CLIP pre-training data is enough to make targeted data poisoning attacks successful. This is four orders of magnitude smaller than what is required to poison supervised models. Despite this vulnerability, existing methods are very limited in defending CLIP models during pre-training. In this work, we propose a strong defense, SAFECLIP, to safely pre-train CLIP against targeted data poisoning and backdoor attacks. SAFECLIP warms up the model by applying unimodal contrastive learning (CL) on image and text modalities separately. Then, it carefully divides the data into safe and risky subsets. SAFECLIP trains on the risky data by applying unimodal CL to image and text modalities separately, and trains on the safe data using the CLIP loss. By gradually increasing the size of the safe subset during the training, SAFECLIP effectively breaks targeted data poisoning and backdoor attacks without harming the CLIP performance. Our extensive experiments show that SAFECLIP decrease the attack success rate of targeted data poisoning attacks from 93.75% to 0% and that of the backdoor attacks from 100% to 0%, without harming the CLIP performance on various datasets.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods