Bleaching Text: Abstract Features for Cross-lingual Gender Prediction

Gender prediction has typically focused on lexical and social network features, yielding good performance, but making systems highly language-, topic-, and platform-dependent. Cross-lingual embeddings circumvent some of these limitations, but capture gender-specific style less. We propose an alternative: bleaching text, i.e., transforming lexical strings into more abstract features. This study provides evidence that such features allow for better transfer across languages. Moreover, we present a first study on the ability of humans to perform cross-lingual gender prediction. We find that human predictive power proves similar to that of our bleached models, and both perform better than lexical models.

PDF Abstract ACL 2018 PDF ACL 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here