Boundary Attention: Learning to Localize Boundaries under High Noise

1 Jan 2024  ·  Mia Gaia Polansky, Charles Herrmann, Junhwa Hur, Deqing Sun, Dor Verbin, Todd Zickler ·

We present a differentiable model that infers explicit boundaries, including curves, corners and junctions, using a mechanism that we call boundary attention. Boundary attention is a boundary-aware local attention operation that, when applied densely and repeatedly, progressively refines a field of variables that specify an unrasterized description of the local boundary structure in every overlapping patch within an image. It operates in a bottom-up fashion, similar to classical methods for sub-pixel edge localization and edge-linking, but with a higher-dimensional description of local boundary structure, a notion of spatial consistency that is learned instead of designed, and a sequence of operations that is end-to-end differentiable. We train our model using simple synthetic data and then evaluate it using photographs that were captured under low-light conditions with variable amounts of noise. We find that our method generalizes to natural images corrupted by real sensor noise, and predicts consistent boundaries under increasingly noisy conditions where other state-of-the-art methods fail.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here