C-WSL: Count-guided Weakly Supervised Localization

We introduce count-guided weakly supervised localization (C-WSL), an approach that uses per-class object count as a new form of supervision to improve weakly supervised localization (WSL). C-WSL uses a simple count-based region selection algorithm to select high-quality regions, each of which covers a single object instance during training, and improves existing WSL methods by training with the selected regions... To demonstrate the effectiveness of C-WSL, we integrate it into two WSL architectures and conduct extensive experiments on VOC2007 and VOC2012. Experimental results show that C-WSL leads to large improvements in WSL and that the proposed approach significantly outperforms the state-of-the-art methods. The results of annotation experiments on VOC2007 suggest that a modest extra time is needed to obtain per-class object counts compared to labeling only object categories in an image. Furthermore, we reduce the annotation time by more than $2\times$ and $38\times$ compared to center-click and bounding-box annotations. read more

PDF Abstract ECCV 2018 PDF ECCV 2018 Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here