Dataset > Modality > Images > COCO (Microsoft Common Objects in Context)

COCO (Microsoft Common Objects in Context)

Introduced by Lin et al. in Microsoft COCO: Common Objects in Context

The MS COCO (Microsoft Common Objects in Context) dataset is a large-scale object detection, segmentation, key-point detection, and captioning dataset. The dataset consists of 328K images.

Splits: The first version of MS COCO dataset was released in 2014. It contains 164K images split into training (83K), validation (41K) and test (41K) sets. In 2015 additional test set of 81K images was released, including all the previous test images and 40K new images.

Based on community feedback, in 2017 the training/validation split was changed from 83K/41K to 118K/5K. The new split uses the same images and annotations. The 2017 test set is a subset of 41K images of the 2015 test set. Additionally, the 2017 release contains a new unannotated dataset of 123K images.

Annotations: The dataset has annotations for

  • object detection: bounding boxes and per-instance segmentation masks with 80 object categories,
  • captioning: natural language descriptions of the images (see MS COCO Captions),
  • keypoints detection: containing more than 200,000 images and 250,000 person instances labeled with keypoints (17 possible keypoints, such as left eye, nose, right hip, right ankle),
  • stuff image segmentation – per-pixel segmentation masks with 91 stuff categories, such as grass, wall, sky (see MS COCO Stuff),
  • panoptic: full scene segmentation, with 80 thing categories (such as person, bicycle, elephant) and a subset of 91 stuff categories (grass, sky, road),
  • dense pose: more than 39,000 images and 56,000 person instances labeled with DensePose annotations – each labeled person is annotated with an instance id and a mapping between image pixels that belong to that person body and a template 3D model. The annotations are publicly available only for training and validation images.