C3PU: Cross-Coupling Capacitor Processing Unit Using Analog-Mixed Signal In-Memory Computing for AI Inference

11 Oct 2021  ·  Dima Kilani, Baker Mohammad, Yasmin Halawani, Mohammed F. Tolba, Hani Saleh ·

This paper presents a novel cross-coupling capacitor processing unit (C3PU) that supports analog-mixed signal in memory computing to perform multiply-and-accumulate (MAC) operations. The C3PU consists of a capacitive unit, a CMOS transistor, and a voltage-to-time converter (VTC). The capacitive unit serves as a computational element that holds the multiplier operand and performs multiplication once the multiplicand is applied at the terminal. The multiplicand is the input voltage that is converted to a pulse width signal using a low power VTC. The transistor transfers this multiplication where a voltage level is generated. A demonstrator of 5x4 C3PU array that is capable of implementing 4 MAC units is presented. The design has been verified using Monte Carlo simulation in 65 nm technology. The 5x4 C3PU consumed energy of 66.4 fJ/MAC at 0.3 V voltage supply with an error of 5.7%. The proposed unit achieves lower energy and occupies a smaller area by 3.4x and 3.6x, respectively, with similar error value when compared to a digital-based 8x4-bit fixed point MAC unit. The C3PU has been utilized through an iris fower classification utilizing an artificial neural network which achieved a 90% classification accuracy compared to ideal accuracy of 96.67% using MATLAB.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here