CBCT-to-CT synthesis with a single neural network for head-and-neck, lung and breast cancer adaptive radiotherapy

Purpose: CBCT-based adaptive radiotherapy requires daily images for accurate dose calculations. This study investigates the feasibility of applying a single convolutional network to facilitate CBCT-to-CT synthesis for head-and-neck, lung, and breast cancer patients. Methods: Ninety-nine patients diagnosed with head-and-neck, lung or breast cancer undergoing radiotherapy with CBCT-based position verification were included in this study. CBCTs were registered to planning CTs according to clinical procedures. Three cycle-consistent generative adversarial networks (cycle-GANs) were trained in an unpaired manner on 15 patients per anatomical site generating synthetic-CTs (sCTs). Another network was trained with all the anatomical sites together. Performances of all four networks were compared and evaluated for image similarity against rescan CT (rCT). Clinical plans were recalculated on CT and sCT and analysed through voxel-based dose differences and {\gamma}-analysis. Results: A sCT was generated in 10 seconds. Image similarity was comparable between models trained on different anatomical sites and a single model for all sites. Mean dose differences < 0.5% were obtained in high-dose regions. Mean gamma (2%,2mm) pass-rates > 95% were achieved for all sites. Conclusions: Cycle-GAN reduced CBCT artefacts and increased HU similarity to CT, enabling sCT-based dose calculations. The speed of the network can facilitate on-line adaptive radiotherapy using a single network for head-and-neck, lung and breast cancer patients.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods