Classes Are Not Equal: An Empirical Study on Image Recognition Fairness

28 Feb 2024  ·  Jiequan Cui, Beier Zhu, Xin Wen, Xiaojuan Qi, Bei Yu, Hanwang Zhang ·

In this paper, we present an empirical study on image recognition fairness, i.e., extreme class accuracy disparity on balanced data like ImageNet. We experimentally demonstrate that classes are not equal and the fairness issue is prevalent for image classification models across various datasets, network architectures, and model capacities. Moreover, several intriguing properties of fairness are identified. First, the unfairness lies in problematic representation rather than classifier bias. Second, with the proposed concept of Model Prediction Bias, we investigate the origins of problematic representation during optimization. Our findings reveal that models tend to exhibit greater prediction biases for classes that are more challenging to recognize. It means that more other classes will be confused with harder classes. Then the False Positives (FPs) will dominate the learning in optimization, thus leading to their poor accuracy. Further, we conclude that data augmentation and representation learning algorithms improve overall performance by promoting fairness to some degree in image classification. The Code is available at https://github.com/dvlab-research/Parametric-Contrastive-Learning.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here