Cloth-Changing Person Re-identification from A Single Image with Gait Prediction and Regularization

Cloth-Changing person re-identification (CC-ReID) aims at matching the same person across different locations over a long-duration, e.g., over days, and therefore inevitably meets challenge of changing clothing. In this paper, we focus on handling well the CC-ReID problem under a more challenging setting, i.e., just from a single image, which enables high-efficiency and latency-free pedestrian identify for real-time surveillance applications. Specifically, we introduce Gait recognition as an auxiliary task to drive the Image ReID model to learn cloth-agnostic representations by leveraging personal unique and cloth-independent gait information, we name this framework as GI-ReID. GI-ReID adopts a two-stream architecture that consists of a image ReID-Stream and an auxiliary gait recognition stream (Gait-Stream). The Gait-Stream, that is discarded in the inference for high computational efficiency, acts as a regulator to encourage the ReID-Stream to capture cloth-invariant biometric motion features during the training. To get temporal continuous motion cues from a single image, we design a Gait Sequence Prediction (GSP) module for Gait-Stream to enrich gait information. Finally, a high-level semantics consistency over two streams is enforced for effective knowledge regularization. Experiments on multiple image-based Cloth-Changing ReID benchmarks, e.g., LTCC, PRCC, Real28, and VC-Clothes, demonstrate that GI-ReID performs favorably against the state-of-the-arts. Codes are available at

PDF Abstract CVPR 2022 PDF CVPR 2022 Abstract

Results from the Paper

Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Person Re-Identification LTCC GI-ReID Rank-1 27.3 # 7
mAP 10.4 # 7
Person Re-Identification MARS Baseline + GS + SC (ours) mAP 80.41 # 13
Rank-1 88.32 # 9
Person Re-Identification PRCC GI-ReID Rank-1 33.3 # 5


No methods listed for this paper. Add relevant methods here