Co-clustering separately exchangeable network data

17 Dec 2012  ·  David Choi, Patrick J. Wolfe ·

This article establishes the performance of stochastic blockmodels in addressing the co-clustering problem of partitioning a binary array into subsets, assuming only that the data are generated by a nonparametric process satisfying the condition of separate exchangeability. We provide oracle inequalities with rate of convergence $\mathcal{O}_P(n^{-1/4})$ corresponding to profile likelihood maximization and mean-square error minimization, and show that the blockmodel can be interpreted in this setting as an optimal piecewise-constant approximation to the generative nonparametric model. We also show for large sample sizes that the detection of co-clusters in such data indicates with high probability the existence of co-clusters of equal size and asymptotically equivalent connectivity in the underlying generative process.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here