Collision-Aware Target-Driven Object Grasping in Constrained Environments

1 Apr 2021  ·  Xibai Lou, Yang Yang, Changhyun Choi ·

Grasping a novel target object in constrained environments (e.g., walls, bins, and shelves) requires intensive reasoning about grasp pose reachability to avoid collisions with the surrounding structures. Typical 6-DoF robotic grasping systems rely on the prior knowledge about the environment and intensive planning computation, which is ungeneralizable and inefficient. In contrast, we propose a novel Collision-Aware Reachability Predictor (CARP) for 6-DoF grasping systems. The CARP learns to estimate the collision-free probabilities for grasp poses and significantly improves grasping in challenging environments. The deep neural networks in our approach are trained fully by self-supervision in simulation. The experiments in both simulation and the real world show that our approach achieves more than 75% grasping rate on novel objects in various surrounding structures. The ablation study demonstrates the effectiveness of the CARP, which improves the 6-DoF grasping rate by 95.7%.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here