Combining adaptive algorithms and hypergradient method: a performance and robustness study

ICLR 2019  ·  Akram Erraqabi, Nicolas Le Roux ·

Wilson et al. (2017) showed that, when the stepsize schedule is properly designed, stochastic gradient generalizes better than ADAM (Kingma & Ba, 2014). In light of recent work on hypergradient methods (Baydin et al., 2018), we revisit these claims to see if such methods close the gap between the most popular optimizers. As a byproduct, we analyze the true benefit of these hypergradient methods compared to more classical schedules, such as the fixed decay of Wilson et al. (2017). In particular, we observe they are of marginal help since their performance varies significantly when tuning their hyperparameters. Finally, as robustness is a critical quality of an optimizer, we provide a sensitivity analysis of these gradient based optimizers to assess how challenging their tuning is.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.