Comprehensive Analysis of Negative Sampling in Knowledge Graph Representation Learning

21 Jun 2022  ·  Hidetaka Kamigaito, Katsuhiko Hayashi ·

Negative sampling (NS) loss plays an important role in learning knowledge graph embedding (KGE) to handle a huge number of entities. However, the performance of KGE degrades without hyperparameters such as the margin term and number of negative samples in NS loss being appropriately selected. Currently, empirical hyperparameter tuning addresses this problem at the cost of computational time. To solve this problem, we theoretically analyzed NS loss to assist hyperparameter tuning and understand the better use of the NS loss in KGE learning. Our theoretical analysis showed that scoring methods with restricted value ranges, such as TransE and RotatE, require appropriate adjustment of the margin term or the number of negative samples different from those without restricted value ranges, such as RESCAL, ComplEx, and DistMult. We also propose subsampling methods specialized for the NS loss in KGE studied from a theoretical aspect. Our empirical analysis on the FB15k-237, WN18RR, and YAGO3-10 datasets showed that the results of actually trained models agree with our theoretical findings.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods